Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli.

نویسندگان

  • Malte Steiner
  • Lutz Claes
  • Anita Ignatius
  • Frank Niemeyer
  • Ulrich Simon
  • Tim Wehner
چکیده

Numerical models of secondary fracture healing are based on mechanoregulatory algorithms that use distortional strain alone or in combination with either dilatational strain or fluid velocity as determining stimuli for tissue differentiation and development. Comparison of these algorithms has previously suggested that healing processes under torsional rotational loading can only be properly simulated by considering fluid velocity and deviatoric strain as the regulatory stimuli. We hypothesize that sufficient calibration on uncertain input parameters will enhance our existing model, which uses distortional and dilatational strains as determining stimuli, to properly simulate fracture healing under various loading conditions including also torsional rotation. Therefore, we minimized the difference between numerically simulated and experimentally measured courses of interfragmentary movements of two axial compressive cases and two shear load cases (torsional and translational) by varying several input parameter values within their predefined bounds. The calibrated model was then qualitatively evaluated on the ability to predict physiological changes of spatial and temporal tissue distributions, based on respective in vivo data. Finally, we corroborated the model on five additional axial compressive and one asymmetrical bending load case. We conclude that our model, using distortional and dilatational strains as determining stimuli, is able to simulate fracture-healing processes not only under axial compression and torsional rotation but also under translational shear and asymmetrical bending loading conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of different methods for fatigue life prediction of steel in rotating bending and axial loading

Generally, fatigue failure in an element happens at the notch on a surface where the stress level rises because of the stress concentration effect. The present paper investigates the effect of a notch on the fatigue life of the HSLA100 (­high strength low alloy) steel which is widely applicable in the marine industry. Tensile test was conducted on specimens and mechanical properties were obtain...

متن کامل

Numerical and Experimental Study on Ratcheting Behavior of Steel Cylindrical Shells with/without Cutout Under Cyclic Combined and Axial Loading

Ratcheting behavior of steel 304L cylindrical shell under cyclic combined and axial loading are investigated in this paper, numerically. Cylindrical shells were fixed oblique at angle of 20° and normal with respect to the longitudinal direction of the shell and subjected to force-controlled cycling with non-zero mean force, which causes the accumulation of plastic deformation or ratcheting beha...

متن کامل

Hot Spot Stress Determination for a Tubular T-Joint under Combined Axial and Bending Loading

Finite element analysis of a tubular T-joint subjected to various loading conditions including pure axial loading, pure in-plane bending (IPB) and different ratios of axial loading to in-plane bending loading has been carried out. This effort has been established to estimate magnitudes of the peak hot spot stresses (HSS) at the brace/chord intersection and to find the corresponding locations as...

متن کامل

Numerical Simulation of Callus Healing for Optimization of Fracture Fixation Stiffness

The stiffness of fracture fixation devices together with musculoskeletal loading defines the mechanical environment within a long bone fracture, and can be quantified by the interfragmentary movement. In vivo results suggested that this can have acceleratory or inhibitory influences, depending on direction and magnitude of motion, indicating that some complications in fracture treatment could b...

متن کامل

Effect of Defects on Mechanical Properties of Graphene under Shear Loading Using Molecular Dynamic Simulation

Graphene sheet including single vacancy, double vacancy and Stone-Wales with armchair and zigzag structure was simulated using molecular dynamics simulation. The effect of defects on shear’s modulus, shear strength and fracture  strain was investigated. Results showed that these shear properties reduce when the degrees of all kinds of defects increase. The dangling bond in SV and DV defected gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 10 86  شماره 

صفحات  -

تاریخ انتشار 2013